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Highlights

 Free and not total zinc concentration is important for the interpretation of 
biological function

 Zinc supplementation affected RPE phenotype
 Zinc supplementation can modulate the secretion of AMD-associated protein 
 Regulation of zinc availability could be key for retinal function
 The positive effect of zinc supplementation in AMD is, at least partly, due to 

an effect on RPE
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ABSTRACT

Population-based and interventional studies have shown that elevated zinc levels can 

reduce the progression to advanced age-related macular degeneration. The objective 

of this study was to assess whether elevated extracellular zinc has a direct effect on 

retinal pigment epithelial cells (RPE), by examining the phenotype and molecular 

characteristics of increased extracellular zinc on human primary RPE cells. 

Monolayers of human foetal primary RPE cells were grown on culture inserts and 

maintained in medium supplemented with increasing total concentrations of zinc (0, 

75, 100, 125 and 150 µM) for up to 4 weeks. Changes in cell viability and 

differentiation as well as expression and secretion of proteins were investigated. RPE 

cells developed a confluent monolayer with cobblestone morphology and 

transepithelial resistance (TER)>200 Ω*cm2 within 4 weeks. There was a zinc 

concentration-dependent increase in TER and pigmentation, with the largest effects 

being achieved by the addition of 125 µM zinc to the culture medium, corresponding 

to 3.4 nM available (free) zinc levels. The cells responded to addition of zinc by 

significantly increasing the expression of Retinoid Isomerohydrolase (RPE65) gene; 

cell pigmentation; Premelanosome Protein (PMEL17) immunoreactivity; and 

secretion of proteins including Apolipoprotein E (APOE), Complement Factor H 

(CFH), and High-Temperature Requirement A Serine Peptidase 1 (HTRA1) without 

an effect on cell viability. This study shows that elevated extracellular zinc levels 

have a significant and direct effect on differentiation and function of the RPE cells in 

culture, which may explain, at least in part, the positive effects seen in clinical 

settings. The results also highlight that determining and controlling of available, as 

opposed to total added, zinc will be essential to be able to compare results obtained in 

different laboratories. 

Keywords: zinc, age related macular degeneration, retinal pigment epithelium, mass 

spectrometry 
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INTRODUCTION

According to the population-based study conducted in Rotterdam, those with the 

highest quartile of zinc nutrition have a lower risk of progression in age-related 

macular degeneration (AMD) [1]. Decreased levels of total zinc in the peripheral 

blood serum and the retinal pigment epithelium (RPE)/choroid [2-6] have also been 

associated with development of AMD.  Accordingly, the Age-Related Eye Disease 

Study (AREDS) trial showed that the progression to advanced AMD was significantly 

reduced in patients who received daily supplementation of 80 mg zinc, especially in 

combination with a cocktail of antioxidants [7]. The mechanism behind this beneficial 

zinc effect remains elusive, but understanding the processes affected by zinc may lead 

to improved or novel treatment strategies for AMD. 

Zinc is the second most abundant trace element in the human body [8-10]. Zinc 

toxicity is rarely observed in vivo [11, 12], although in cell culture experiments zinc 

overdose can trigger cell death [13-16]. In the eye, zinc is present in high 

concentrations [17-19] where the majority of ocular zinc is localised to the 

RPE/choroid complex [20]. Zinc deficiency or zinc overload in the RPE can lead to a 

variety of problems [21-25]. However, the actual concentration of biologically active 

or available zinc ions (e.g., the small fraction of total zinc ions not tightly bound by 

protein and other ligands) is not determined; therefore, comparison of results between 

laboratories is usually difficult. Active uptake and prolonged retention of zinc has 

been shown in RPE in vivo [26] and the presence of exchangeable zinc in RPE has 

been demonstrated [27, 28] and was localized to the Golgi apparatus [29], 

melanosomes, and lysosomes [30-33].

Based on protocols for culturing and differentiating human RPE cells [34-36] there 

are abundant high affinity zinc-binding proteins such as serum albumin in the culture 

medium and it is hypothesized that RPE cells in culture are in a potentially zinc-

deficient environment. In this report, we cultured primary human RPE cells in a zinc-

enriched environment by supplementing the culture medium with different 

concentrations of added zinc sulphate and found that under these conditions 3.4 nM 

free zinc could accelerate RPE differentiation, alter gene expression, and modify 

secretion of AMD-specific proteins. 
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MATERIALS AND METHODS

RPE Cell Culture.

Primary human foetal RPE cells were purchased from ScienCell™ Research 

Laboratories at passage 1 (P1). Cells were propagated and frozen as P2 cells. For the 

experiments below, P3 cells were seeded onto laminin-coated 24 well plastic culture 

plates with glass cover slip or porous cell culture inserts (Millipore Millicell-HA 

Culture Plate Inserts, PIHA 01250) with the density of 125,000 cells per square 

centimetre and cultured in Epithelial Cell Medium (EpiCM, ScienCell™ Research 

Laboratories) for one week to allow optimal propagation, following the 

manufacturer’s instructions. Following this period cells were differentiated in the so-

called “Miller medium”[35] with or without 75, 100, 125, 150 or 200 µM added zinc 

sulphate (Sigma-Aldrich) apically, and when the cell culture insert was used, non-

supplemented medium basally for 28 days. Medium was changed twice a week and 

cells were maintained at 37˚C and 5% CO2. Prior to change of culture medium, trans-

epithelial resistance (TER) was measured using the EVOM2 Epithelial Voltohmmeter 

and STX2 electrodes (World Precision Instruments). Both apical and basal media 

were collected at the time of the change of medium for toxicity measurements using 

the CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega) to monitor cell 

viability. Pigmentation was imaged using a Nikon LZM1500 binocular microscope at 

1x magnification and the coverage of pigment at different zinc concentrations was 

determined by ImageJ software (ImageJ v.1.51p; background subtraction and 

thresholding then analysing particle size distribution). 

Determination of free zinc in the medium

Zinc concentrations in the Miller medium were calculated using MINEQL, a chemical 

equilibrium program for personal computers [37],as well as measured using 

fluorescent sensors essentially as described [13]. Briefly, the known affinities [23, 38] 

and concentrations of the 25 most important zinc ligands were included in the 

calculation; other potential ligands (e.g. vitamins, growth factors) were not included 

in the calculation due to their low concentrations (< 10 nM) and/or weak affinities 

(KD> 1 μM). Bioavailable (“free”) zinc was held to include Zn2+ together with its 

labile complexes with weak, rapidly exchangeable ligands such as water, hydroxide, 

or chloride: e.g., ZnOHCl, ZnCl2, etc. The results were corrected for temperature, 
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ionic strength, and pH, and the presence of dissolved CO2 in the medium was 

included. The accuracy of this calculation method was previously demonstrated for 

other media[39] and sea water[40]. We used a variation on our previously described 

fluorescence-based zinc biosensors [41-43] to measure the free zinc in the growth 

medium.  The sensor employed one of two variants of apocarbonic anhydrase II to 

provide sensitivity to the appropriate free zinc concentrations, and a polymeric form 

of ABDN (7-amino-(2’-hydroxyethyl)-benz-2-oxa-1,3-diazole-4-sulfonamide) which 

exhibits a 50 nm blue shift in its peak fluorescence emission when bound to 

holocarbonic anhydrase compared to its unbound form which is observed in the 

absence of zinc, when both are entrapped in a porous gel.  The ratio of fluorescence 

emission at 550 to 600 nm is thus a measure of the proportion of carbonic anhydrase 

with zinc bound, which in turn is a simple function of the free zinc 

concentration[41].The variants of the carbonic anhydrase were wild type bovine CA II 

and H94N human CA II, which exhibited apparent KD’s under the conditions of the 

experiment of 0.10± 0.033 and 0.71± 0.06 nM, respectively (data not shown).    

Immunohistochemistry (IHC) and confocal microscopy

After 28 days of zinc supplementation, specimens were rinsed in PBS (3×5 min), 

fixed for 10 min in 4% (v/v) paraformaldehyde in PBS, and stored in 0.4% 

paraformaldehyde pending sectioning and immunohistochemical analysis. The 

membrane inserts were carefully excised, then cryopreserved by immersion in 30% 

(w/v) sucrose (in PBS) overnight at 4˚C, followed by 30% sucrose plus Tissue-Tek® 

O.C.T.™ compound (Sakura) at 50% : 50% (vol:vol) for 2 hr, and finally in 100% 

(v/v) O.C.T. for 1 hr. Cryopreserved samples were embedded in OCT and 20 µm 

sections were generated on a cryostat (Bright Instruments). Sections were rinsed with 

PBS and blocked with 5% (v/v) donkey serum in PBT (PBT: PBS containing 0.5% 

(w/v) bovine serum albumin and 0.1% (v/v) Triton X-100) for 1 hr at room 

temperature. The sections were co-labelled with polyclonal goat anti-human 

Apolipoprotein E (1/500 in PBT, Millipore) and monoclonal mouse anti-human 

PMEL17 (clone HMB45, 1/2000 in PBT, Dako) antibodies for 1 hr at room 

temperature. Sections were rinsed for 3×5min in PBS, after which they were 

incubated in Alexa Fluor 546-conjugated donkey anti-goat IgG and Alexa Fluor 488-

conjugated donkey anti-mouse IgG (both 1/200 in PBT, Life Technologies) for 1hr at 
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room temperature. After removal of the secondary antibodies by rinsing the sections 

with 3x5 min in PBS, nuclei were stained with Hoechst 33342 (1.5 µg/ml in PBS, 

Life Technologies) and mounted on slides with Vectashield antifade mounting 

medium (Vector Laboratories). Immunofluorescence was imaged using a Zeiss 

LSM700 confocal microscope and analysed by ZEN 2 software (Carl Zeiss 

Microscopy GmbH). 

Transmission electron microscopy (TEM)

After 28 days of zinc supplementation, specimens for TEM were fixed in a solution of 

1% (v/v) glutaraldehyde and 1.5% (v/v) paraformaldehyde in 0.1 M PBS at pH 7.2. 

Specimens were post-fixed with 1% (w/v) osmium tetroxide in 0.1 M PBS for 50 min, 

dehydrated and embedded in Araldite. For EM, ultra-thin sections were cut and 

stained with 1% (w/v) uranyl acetate and Reynolds’ lead citrate. Semi-thin sections 

for light microscopy were also cut and stained with Toluidine Blue. EM was 

performed using a JEOL JEM-1010 Transmission Electron Microscope. Images were 

collected using a Gatan Orius CCD camera and converted from Digital Micrograph 

DM3 format to 8-bit TIFF images for analysis at 4008 X 2762-pixel resolution.

Mass spectrometry and label-free quantitative analysis

To analyse the secreted proteins with or without 125 µM added zinc at day 28 after 

zinc supplementation, cells were washed with 1x5 min PBS then kept in serum-free 

“Miller medium” for 24 hr, after which the apical secretome and the filter insert for 

basal secretion were collected and frozen immediately, except when part of the 

membrane insert was fixed for immunolabeling. Proteins absorbed by the membrane 

during culturing representing the basally secreted protein pool were directly 

proteolyzed on the membrane by incubation with ammonium bicarbonate buffer, 

reduction with dithiothreitol for 30 minutes at 60°C, followed by 

carbamidomethylation of cysteines with iodacetamide for 30 minutes at room 

temperature under constant agitation. Proteins contained in the apical secreted 

compartment were digested by a filter-aided sample preparation method as described 

previously [44]. Trypsin (1µg) was added and samples were digested overnight at 

37°C. Peptides were acidified and directly used for mass spectrometry.

 LC-MS/MS analysis was performed on an Orbitrap XL mass spectrometer 

(ThermoFisher Scientific) online coupled to an Ultimate 3000 RSLC nano-HPLC 
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(Dionex) as described [44]. Acquired raw data was loaded onto the Progenesis QI 

software for MS intensity-based label-free quantification (Nonlinear Dynamics, 

Waters). After alignment to achieve a maximum overlay of peptide features, filtering 

of singly charged features and features with charges >7 as well as normalization to 

correct for systematic experimental variation, all MSMS spectra were exported and 

searched against the Ensembl human database (100158 sequences) using the Mascot 

search engine with the following search settings: enzyme trypsin, one missed cleavage 

allowed; 10 ppm peptide mass tolerance and 0.6 Da fragment mass tolerance. 

Carbamidomethylation was set as fixed modification, methionine oxidation and 

asparagine or glutamine deamidation were allowed as variable modifications. A 

Mascot-integrated decoy database search calculated an average false discovery of 

<0.1% when searches were performed with a mascot percolator score cut-off of 18 

and significance threshold of 0.01. Peptide assignments were re-imported into the 

Progenesis QI software. The abundances of all unique peptides allocated to each 

protein were summed up and the resulting normalized abundances were used for 

calculation of fold-changes of proteins and significance values by a Student’s T-test.

RESULTS

Determination of free zinc concentrations in the Miller medium

While publications usually report only the added zinc concentration to an experiment, 

the concentration of added (or total) zinc is typically much greater than that readily 

available for biological activity. Most of the added zinc is tightly bound to proteins, 

amino acids and other components of the culture medium. Thus, the concentration of 

zinc that cells will actually be exposed to depends critically on the composition of a 

culture medium [13] and therefore, the level of free, rapidly exchangeable zinc was 

modelled in the RPE culturing “Miller” medium, used for our zinc supplementation. 

With the known amounts and zinc affinities of the principal components of the 

medium, free zinc levels were calculated and measured to be at least one thousand-

fold lower (in the nM range) than the total levels present in the medium (Figure 1). 

Comparable results had been obtained with other media and cells or cell lines 

previously [39].  Also, our model was validated by measuring the free zinc as a 

function of added zinc in the medium with two different fluorescence sensors (Figure 

1); the good agreement between measured and calculated levels of available zinc in 
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this and other media suggests that MINEQL accurately predicts the level of available 

zinc present for a given level of added (total) zinc. Henceforward, the zinc effects are 

also reported in terms of the free zinc concentration. 

The effects of zinc on the differentiation and maturation of RPE cells: Development of 

transepithelial resistance (TER)

RPE cells in vivo are highly differentiated both morphologically and functionally. One 

indicator of RPE cell differentiation is the development of TER. In the absence of 

added zinc (Figure 2, the maximum TER value after 4 weeks in culture was 

208.6Ω*cm2.  Cells cultured with 75 µM-added zinc (2.0 nM free zinc) showed no 

effect on TER compared with no added zinc. However, both 100 µM and 125 µM 

added zinc (2.7 nM and 3.4 nM free zinc, respectively) produced a robust and 

statistically significant increase in the TER which plateaued at 343.2 Ω*cm2. Addition 

of 150 µM zinc (4.0 nM free zinc) produced no change in TER at any of the time 

points compared with no added zinc. None of these concentrations of added zinc was 

toxic to the RPE cells as no change in LDH release was detected (Figure S1). 

However, addition of 200 µM zinc resulted in round-shaped RPE cells and 

detachment from the insert membrane. Based on the results of the TER measurement 

in subsequent experiments we used 125 µM added zinc, equivalent to 3.4 nM free 

zinc.

Pigmentation

Well-differentiated RPE cells develop pigmentation, basally located nuclei, and 

numerous apical microvilli[36]. Pigmentation was visualized by light microscopy 

(Figure 3) and quantified at the end of 28 days of zinc supplementation. Both controls 

and zinc-treated samples exhibited pigments, however in the presence of zinc the 

extent of pigmentation was much more widespread (Figure 3A and D, respectively). 

In our hand, in the absence of zinc, pigmentation appeared first close to the edge of 

the inserts (Figure 3A). Our observations were validated qualitatively by comparing 

TEM images from 0 and 125 µM added zinc. We found higher numbers of pigment 

granules and apical microvilli in the presence of 125 µM added zinc (Figure 3B and 

E). Immunolabeling with anti-PMEL17, which labels pre-melanosomes, showed 

increased immunoreactivity after zinc treatment, supporting the EM observations 

(Figure 3C and F, respectively). The increase in pigmentation was assessed 
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quantitatively by analysing the level of pigmentation at different concentrations of 

added zinc (Figure 3G). 

Basal and apical secretion of proteins

Polarised RPE cells have been shown to secrete a variety of proteins  both apically 

and basally [45]. Apolipoprotein E (APOE) had been used to monitor basal secretion 

and sub-RPE accumulation of materials [46]. The immunoreactivity of this protein 

was therefore used to examine the effects of zinc in basal secretion in our 

experiments. As expected, APOE accumulated in the cell culture inserts (Fig 3C, 

magenta) in a fashion identical to that reported by Johnson et al.[46]. In the presence 

of 125 µM added zinc we detected an increase in APOE immunoreactivity in the filter 

inserts (Figure 3F; magenta). This qualitative observation was then confirmed by MS 

analysis (Table 1) in which a significant increase in secretion of APOE and other 

proteins was detected upon zinc treatment in membrane inserts (Table 1). While most 

changes in protein levels increased after zinc treatment, Histone cluster 1, H2ae 

secretion showed a significant decrease (Table 1 and Supplementary table T1).

We also examined the effects of zinc supplementation on protein secretion in the 

apical compartment of the RPE (Table 2 and Supplementary table T2). There were 

several proteins that showed increased secretion after zinc supplementation in the 

apical compartment (Table 2). Particularly interesting were the increased secretion of 

complement factor H (CFH) [47-49] and high temperature requirement serine 

protease A1 (HTRA1) [50, 51] which are genetically associated with AMD [52-55].
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DISCUSSION

An outstanding question in relation to AMD is how zinc supplementation exerts its 

observed beneficial effect [56-59]. Here we report that one of the ways is through 

direct effects on the RPE cells. Our results suggest that the availability of zinc can 

directly and significantly affect the RPE, and therefore may have influence on the 

interactions of the RPE with the photoreceptors and the choroidal micro vessels. 

Zinc is indispensable for a multitude of molecular functions including, but not 

restricted to, regulating transcription factors, hundreds of enzyme activities, and 

protein structure and stability, as well as signaling [60]. Experiments with other 

tissues showed that zinc is involved in maintaining membrane integrity and tight 

junction formation [61-65]. In fact, zinc supplementation had a direct effect  on zona 

ocludens-1 and occludin [66], which are both present and part of tight junctions in 

RPE cells; this may explain the significant change in TER in our experiments (Figure 

2). In addition, zinc may affect the cytoskeletal network [67] and thereby exert its 

effect or contribute to changes in TER through the reorganization of the cytoskeleton. 

One of the important functions of RPE cells is to regulate the transport in and out of 

the neural retina. Therefore, regulation of TER by zinc will have important 

consequences in vivo as the RPE monolayer is part of the outer blood-retinal barrier.

Pigmentation is used as a differentiation marker for RPE cells [68, 69]. Melanin is 

thought to play a role in both normal and pathological behavior of RPE cells [70]. 

Melanin production is a complex process directly involving three enzymes: tyrosinase 

and tyrosinase-related proteins 1 (TYRP1) and 2 (TYRP2). Zinc directly binds to 

tyrosinase and TYRP2 [71-74], which could be the reason for the high zinc content of 

melanosomes [75-77]. In addition, zinc directly affects the activities of tyrosinase and 

TYRP2, which may explain why the zinc-enriched environment increased the cell 

pigmentation, leading to increased immunoreactivity of PMEL17 in our experiments 

(Figure 3).The increased melanin content and TER values were accompanied by 

increased density of apical microvilli and melanosomes (Figure 3B and E), all of 

which are characteristic of RPE cell maturation [34-36, 78]. Therefore, increased 

availability of zinc appears to be directly involved in the development and probably 

maintenance of a mature and healthy RPE.
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RPE cells transport and secrete a variety of proteins, lipids and other chemicals 

bidirectionally [45, 79-81] and there is an apical/basal difference in this process in 

vivo as well as in cell culture [45]. Perhaps not surprisingly, we identified several 

proteins in the apical and basal secretome (Supplementary table 1 and 2). Amongst 

the basally secreted proteins was APOE, which has been associated with AMD [82], 

and had been shown to be secreted from and accumulated under primary human RPE 

cells in culture [46, 83]. We not only found that APOE behaves the same way in our 

experiments, but also showed that zinc increases the secretion of this protein (Table 1 

and Figure 3). The association between APOE and zinc appears to be at multiple 

levels. APOE isoforms bind zinc directly [84], and this binding can increase their 

stability [85]. In addition, it is believed that zinc can increase cellular APOE levels by 

directly affecting transcription [86] and/or secretion [87]. Which of these lead to the 

increased accumulation of APOE in our experiments will need to be investigated 

further, especially in light of the involvement of APOE in sub-RPE deposit formation 

[88]. Apart from APOE we identified a number of other components of sub-RPE 

deposits [89] in the basal secretome (Supplementary table T1) and some of these were 

significantly affected by the addition of extracellular zinc (Table1). Apart from 

changes in basal secretion, apical secretion was also affected by zinc supplementation 

(Table 2). We found increases in secretion of CFH and HTRA1, both of which have 

been previously reported in RPE secretomes [54, 55]. The exact role of these apically 

secreted proteins is yet to be determined, but it was suggested that both might protect 

photoreceptors from effects of inappropriate complement activation and/or amyloid 

deposition [54, 55].

Previously we reported that on thin polycarbonate inserts sub-RPE deposits can 

readily form drusen-like deposits [83]. We did not see such deposits in this study. 

This might be due to the use of 100 µm thick mixed cellulose esters in the inserts, into 

which proteins can diffuse and become trapped in the fiber meshwork. Entrapment 

within the insert was observed in another study [46], suggesting that this type of filter 

insert is useful to analyze the basal secretome. 

The concentration of total zinc that was added to the cell culture medium in our 

experiments was several orders of magnitude higher than the resulting free or 

bioavailable zinc concentration that is available for biological functions (125 µM vs 
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3.4 nM, respectively). This is routinely seen due to the complex mixtures containing 

many zinc buffering components in the culture medium [13]. For example, fetal 

bovine serum, comprised of a mixture of serum albumin, amino acids, growth factors, 

protease inhibitors, proteins, lipids, and minerals [90], has both a large zinc-binding 

capacity and affinity: albumin and alpha-2-macroglobulin together bind more than 

98% of serum zinc [91-93]. As a result, only a small fraction of zinc in serum is really 

available to be biologically active [13].  For this very reason, if cells would release 

zinc this zinc would be rapidly captured by the buffers and would not affect biological 

activity. Thus, the free zinc concentration is effectively “clamped” in these 

experiments.

Different cell lines require different culture media, therefore it is important to report 

not only the added zinc but also the resulting bioavailable zinc concentrations [13]. It 

is also important to note that based on previous work by Bozym, et al. [13, 39], the 

effects in terms of free zinc are transferrable to other systems and media whereas the 

effects of added zinc are not. While this might not be true for all media, MINEQL 

calculation of zinc accurately reflected the measured available zinc levels in our 

experiment (Figure 1.). Based on this, we also calculated the buffering capacity of 

DMEM/F12, another medium often used to culture RPE cells, and found that one can 

reach ~3 nM free zinc at the concentration of <40 µM added zinc, a three to four-fold 

lowered buffering capacity compared to the Miller medium used in this report. While 

direct determination is always preferred, it appears that modelling buffering capacity 

can give a good estimate for potential biological activity.

In summary, increased zinc availability had a multitude of effects on the RPE cells in 

our experiments. In addition to our findings, zinc has been shown to mediate 

oxidative stress[94], phagocytic and lysosomal function [70, 95], macromolecule 

synthesis- and caspase-dependent apoptosis[96], increased photic injury [97], and 

DNA damage[98]. Zinc can also kill RPE cells in culture if there is too much or too 

little of it [25, 96], although in vivo toxicity is rarely reported [11, 12]. Interestingly, 

the range of free zinc concentrations that RPE cells are able to handle appears to be 

relatively narrow, <5 nM, at least in culture. It is unclear whether in vivo the 

extracellular milieu has bioavailable zinc identical or similar to these values. 

However, the fact that culture media have a capacity to keep available zinc levels in 
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our experiments in the nanomolar range even up to 150 μM added zinc suggests that 

zinc buffering capacity will need to be considered when in vitro and in vivo 

supplementations are considered. The challenge now is to determine the “normal” free 

zinc concentration for the RPE in vivo. The RPE directly interacts with the 

photoreceptors and the Bruch’s membrane, and indirectly with the choroidal 

circulation. Given that total zinc levels are altered in human eyes with signs of AMD 

[6, 99-101], all the reported changes suggest that determining and maintaining a 

“healthy” concentration of available zinc will be important for the maturation and 

health of the RPE, therefore intervening the development and progression of AMD. 
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FIGURE LEGENDS

FIGURE 1. Determination of free zinc concentrations in the Miller medium. Free 

zinc concentration in the Miller medium was determined based on changes of 

fluorescence intensity ratio as a function of total zinc added.  Black circles (●) 

represent the calculated concentration of free zinc using MINEQL [13]. Open circles 

(○) indicate free zinc concentrations measured by emission intensity ratios using a 

fluorescent biosensor composed of wild type bovine apo-carbonic anhydrase II and 

polymeric ABDN, and open squares (□) represent free zinc levels measured using 

human H94N apo-CA II plus poly-ABDN.  Under these conditions the zinc binding 

KD’s of wt bovine and human H94N CA-II’s are measured as 0.10 ± 0.03 and 0.71 ± 

0.06 nM, respectively (results not shown). The double logarithmic plot estimated that 

at 125 µM of added zinc the free zinc concentration is approximately 3.4 nM (dashed 

line).

FIGURE 2. Transepithelial (TER) measurements of the RPE cultures 

supplemented with 0, 75, 100, 125, and 150 µM zinc. TER measurements of RPE 

grown with 0 µM (-●-), 75 µM (-○-), 100 µM (-□-), 125µM (-■-), and 150 µM (-Δ-)  

added zinc were measured with an epithelial volt-ohm meter.  100 μM (*) and 125 

μM (#) added zinc demonstrated statistically significant (p < 0.05) increases in TER 

compared to 0 μM. 

FIGURE 3. Effects of added zinc on RPE pigmentation and cell differentiation. 

RPE cultures developed pigmentation and this was observed under light microscopy 

(panels A&D). TEM (B&E) showed characteristics of RPE cell differentiation 

including pigment maturation (M) and microvilli (MV) development. IHC images 

(C&F) indicated melanosome (green), ApoE (magenta) and nuclei (blue). (G) Zinc 

concentration dependent increase in pigmentation was analysed by ImageJ and 

coverage was determined as percentage of total image area of three inserts in each 

condition; # labels values that are significantly different from no added zinc (p<0,05). 

Asterisks indicate Millicell-HA Culture Plate Inserts; scale bar is 10 µm.

FIGURE S1. Determination of toxicity of added zinc to RPE cultures. Cell culture 

medium was collected from the apical (A) and basal (B) compartments of the culture 
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inserts and assessed by a colorimetric assay.  Maximum LDH (dotted lines) was 

measured by complete lysis of confluent RPE. LDH release was measured after 

incubating the cells for different length of time with 0 µM (-●-), 75 µM (-○-), 100 µM 

(-□-), 125µM (-■-), and 150 µM (-Δ-) added zinc.
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Table 1
Effect of zinc supplementation on basal protein secretion from human foetal retinal pigment epithelium in culture

Protein name Gene symbol Peptide 
count

Unique 
peptide

s

P 
values

Ratio of
zinc/

control

AHNAK nucleoprotein AHNAK 2 2 0.03110 1.35
Albumin ALB 6 6 0.00182 1.14

Apolipoprotein A-IV APOA4 3 3 0.00035 1.22
Apolipoprotein E APOE 2 2 0.00230 1.33

Betaine-homocysteine S-methyltransferase BHMT 2 2 0.01856 1.52
Cartilage oligomeric matrix protein COMP 2 2 0.04887 1.27

CNDP dipeptidase 2 (metallopeptidase M20 family) CNDP2 2 2 0.00805 1.32
Coagulation factor V (proaccelerin, labile factor) F5 6 6 0.03121 1.16

Crystallin, alpha B CRYAB 6 6 0.00095 1.32
Dihydropyrimidinase-like 2 DPYSL2 11 11 0.00127 1.2

Eukaryotic translation elongation factor 1 gamma EEF1G 4 4 0.00717 1.41
Filamin A, alpha FLNA 6 6 0.04472 1.33

FUS RNA binding protein FUS 2 2 0.00596 1.23
Glucose-6-phosphate isomerase GPI 4 4 0.00191 1.47
Heat shock 70kDa protein 1B HSPA1B 14 4 0.02752 1.25
Heat shock 70kDa protein 4 HSPA4 2 2 0.01636 1.28

Heat shock protein 90kDa alpha (cytosolic), class B 
member 1 HSP90AB1 14 6 0.04500 1.59

Heterogeneous nuclear ribonucleoprotein HNRNPD 4 3 0.04164 1.43
Histone cluster 1, H2ae HIST1H2AE 2 2 0.02588 0.57

Inter-alpha-trypsin inhibitor heavy chain 2 ITIH2 9 9 0.00734 1.25
Oncoprotein induced transcript 3 OIT3 2 2 0.03582 1.47

Pyruvate kinase, muscle PKM 21 2 0.00104 1.37
Ribosomal protein L22 RPL22 2 2 0.04510 1.19

Solute carrier family 9, subfamily A SLC9A3R1 5 5 0.02962 1.47
Transgelin 2 TAGLN2 5 5 0.04890 1.12

Ubiquitin carboxyl-terminal esterase L1 (ubiquitin 
thiolesterase) UCHL1 2 2 0.03134 1.39

Statistically significant results are listed, based on p<0.05 (ANOVA) and unique peptides ≥ 2.



Table 2
Effect of zinc supplementation on apical protein secretion from human foetal retinal pigment epithelium in culture

Protein Gene symbol Peptide 
count

Unique 
peptides P values Ratio of 

zinc/control

Biglycan BGN 4 4 0.00959 1.53
CNDP dipeptidase 2 CNDP2 2 2 0.03747 7.84

Collagen, type XII, alpha 1 COL12A1 10 10 0.02864 2.07
Complement factor H CFH 27 27 0.00204 1.70

Fatty acid binding protein 5 FABP5 2 2 0.03445 2.80
Fibronectin 1 FN1 36 36 0.00038 1.79

HtrA serine peptidase 1 HTRA1 3 3 0.00005 5.46
Leucine proline-enriched proteoglycan 

(leprecan) 1
P3H1 2 2 0.00266 2.07

Microtubule-associated protein 4 MAP4 7 7 0.01499 1.80
Myristoylated alanine-rich protein kinase C 

substrate
MARCKS 3 3 0.03464 3.08

Platelet derived growth factor C PDGFC 3 3 0.02959 2.56
Pyrophosphatase 1 PPA1 2 2 0.02982 3.22

Serpin peptidase inhibitor SERPINA3 12 11 0.03224 2.15
Serpin peptidase inhibitor SERPINH1 3 3 0.02714 1.94

Thrombospondin 1 THBS1 38 36 0.01000 1.53
Statistically significant results are listed, based on p< 0.05 (ANOVA) and unique peptides ≥ 2.


